AUTOMATING ROUTE MAPPING FOR PBS VEHICLES

Technology Convergence 2023 M.Coleman, R.Ibrahim, S.Buxton

INTRODUCTION

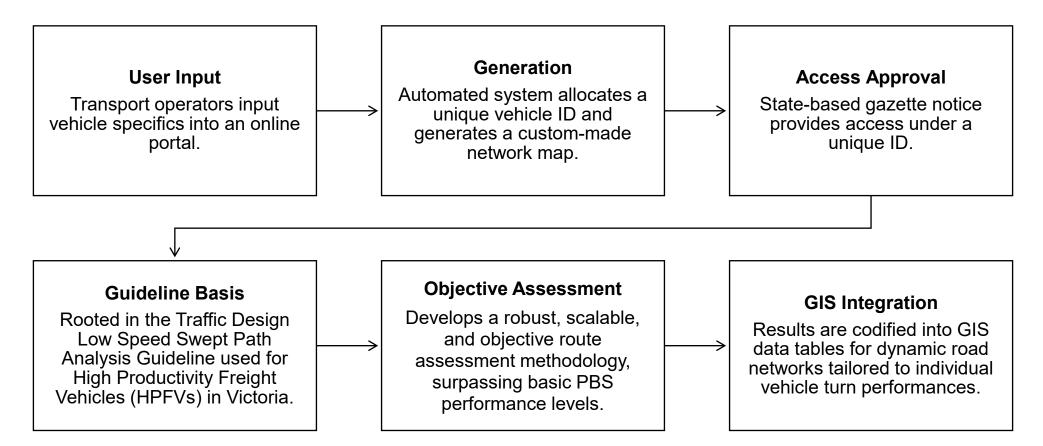
- 1. **Revolutionary PBS Route Tool:** DSG's cutting-edge mapping tool for PBS vehicles automated, bespoke maps, transforming route planning.
- 2. Precision in Seconds: Operators input vehicle details, get unique IDs, and dynamic maps instantly. Adaptable for diverse networks, especially unladen operation.
- **3. Future-Ready PBS Networks:** Tool anticipates Level 3B vehicles, considers geometry, and LSSP performance. GIS methodology reshapes the landscape of heavy transport.

BACKGROUND

- **1. Tasmanian Road Transport Overview:** Overview of road transport landscape in Tasmania.
- 2. Existing SPV Mapping Tool: Enables transport operators to input vehicle specifics into an online portal, generating a unique ID and bespoke network map, facilitating state-approved access. Multiple IDs support diverse network usage, especially unladen operation.
- **3. Motivation for PBS Tool:** Leveraging SPV tool success, DSG aims to optimize PBS vehicle routes for enhanced efficiency and adaptability.

RESEARCH QUESTION & GOALS

Research Question:


 Can we develop a robust, scalable route assessment methodology for detailed swept path analysis of bespoke PBS heavy vehicles, codified into GIS for dynamic route maps?

• Specific Goals:

- 1. Validate attributes for automated GIS road network mapping.
- 2. Optimize and document route assessment for time efficiency.
- 3. Minimize reliance on "engineering judgement" for objective, consistent, and scalable network assessments.

DYNAMIC ROUTE MAPPING FRAMEWORK

METHODOLOGY

Developing LSSP reference vehicles

Refining and developing LSSP route assessment method

Refining and developing GIS attributes table

Assessing target intersections in Northern Tasmania

LSSP REFERENCE VEHICLES

- Achieved 0.1m swept path granularity for PBS assessments by developing vehicles from 5.4m (PBS Level 1) to 10.6m (PBS Level 3).
- Considered Austroads design (e.g., 12.5m trucks, 13.5m buses) due to space constraints, especially on local roads.
- Used 2.6m wide vehicles for assessment, anticipating potential wider global standards and aiming for future-proofing.

Vehicle Combination	Configuration	LSSP (m)	Project Group
Truck/Bus	12	5.4: 6.5	Truck-Bus (LSSP: 5.4-6.5)
Prime Mover Semi	12s3	6.6: 8.0	Prime Mover & Semi-Trailer (LSSP: 6.6 8.0)
B-Double	12s3s3	8.0: 8.7	B-Double (12s3s3) (LSSP: 8.0-8.7)
A-Double	12s3-2s3	8.8: 10.6	A-Double (12s3-2s3): (LSSP: 8.8 10.6)

ROUTE ASSESSMENT METHOD

Refinement Process:

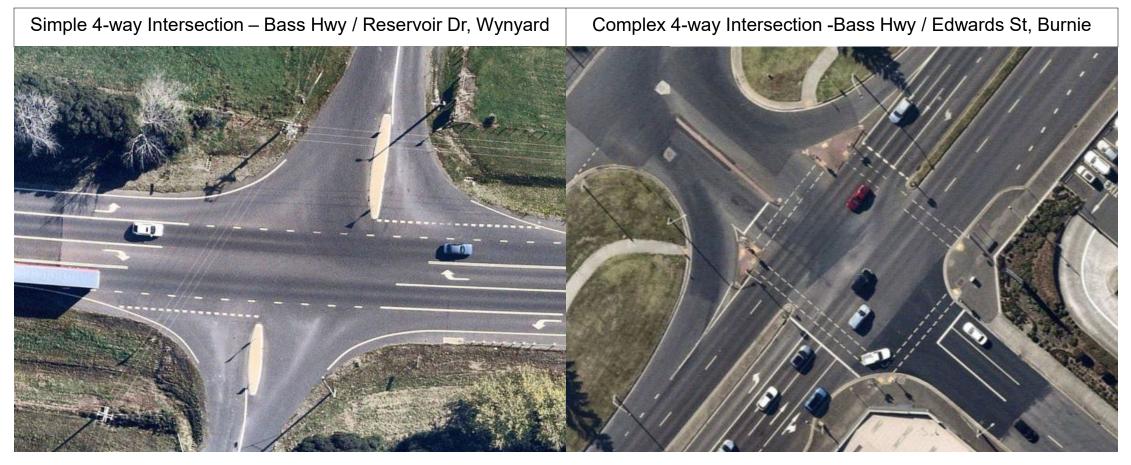
- Adapted VicRoads guidelines for target intersections in Northern Tasmania.
- Iteratively refined with DSG teams and local factors.

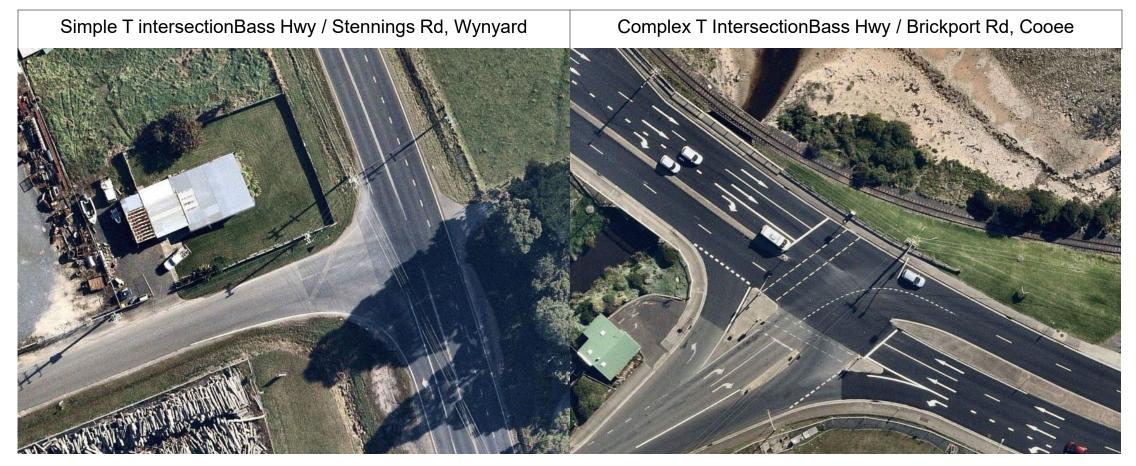
Structured Approach:

- Used risk assessment framework.
- Collaborated with stakeholders for unique perspectives.
- Consultation:
 - Engaged DSG network access and geospatial teams.
 - Conducted desktop risk assessment for 2-3 intersections.

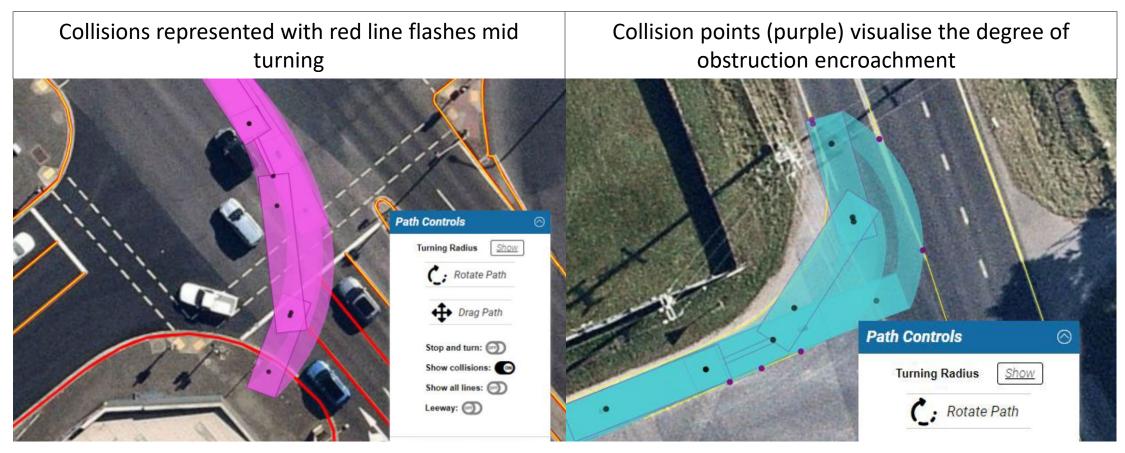
GIS ATTRIBUTES

- 1. Intersection ID: A unique identifier for each intersection
- 2. Turn ID: The unique identifier for each turn within each intersection
- **3. Description**: Describes the turn which outlines the road names and turn directions.
- 4. Swept Path: Result of swept path analysis. The theoretical capacity of the intersection.
- 5. SP Access: A Swept Path number DSG have applied to some vehicles based on experience.
- 6. SP Current: The current level of access provided, 7.4 m (PBS L1), 8.7 m (PBS L2).
- 7. SP Target: The desired level of access for the intersection.


Based on review of frameworks and tools like google map APIs, GIS data protocols, etc.

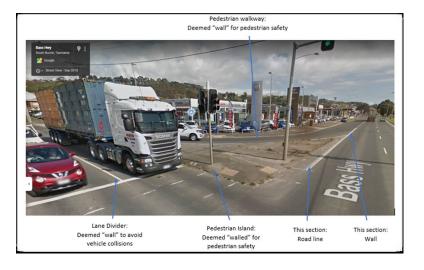

- Used Spider Path with Near Maps aerial imagery on DSG's selection based on PBS Network demand and aerial imagery coverage
- Assessed vehicle performance for each combination and Mapped swept paths onto Tasmanian intersections

ltem	Turn ID	Description	LSSP (m)
1	I1_A1_1	Stennings RdBass Hwy (North Bound)	6.5
2	I1_A1_2	Stennings RdBass Hwy (South Bound)	10.6
3	I1_A2_1	Bass Hwy (South Bound)	No Turn
4	I1_A2_2	Bass Hwy (South Bound)Stennings Rd	9.6
5	I1_A3_1	Bass Hwy (North Bound)Stennings Rd	8.7
6	I1_A3_2	Bass Hwy (North Bound)Stennings Rd !CrossLanes!	10.4
7	I1_A3_3	Bass Hwy (North Bound)	No Turn



COLLISION BOUNDARIES

- **Development:** Designed as a route assessment tool, emphasizing encroachment.
- **Objective:** Enables quick, objective judgment and measures LSSP encroachment.
- Visuals: Flashing lines illustrate mid-turn collisions; purple points indicate encroachment.
- Automation Base: Vital for LSSP assessment automation, foundational in the existing process.
- Implementation: All drawn lines treated as wall-to-wall; optimal path drawn with LSSP 10.6m vehicle.
- Enhancements: Introduces soft boundaries for precision, considers roadside objects for realism.



COLLISION BOUNDARIES

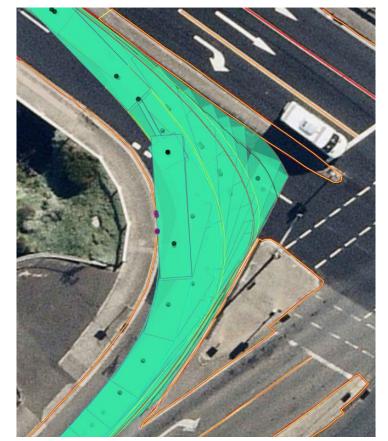
COLLISION BOUNDARIES

Category	Description	Examples
Road Lines	Defined by common vehicle road rules (realistically encroached by trucks)	Solid road lines
Curbs (Soft Constraint)	Frontal /Tail Swing may spill over this area, but tyres cannot (i.e. non-mountable)	Curb islands (non-pedestrian & without fences)Grass patches, roundabouts
Walls (Hard Constraint)	No part of the vehicle may encroach this area	 Fences/barriers/tall obstacles Solid lane dividers in busy intersections Pedestrian walkways, pedestrian Islands

EFFECT OF FRONTAL SWING AND S-DIMENSION

• Front Overhang (FOH) for PBS Compliance:

- FOH maximized to meet PBS Frontal Swing limit of 0.85 m which resulted in larger FOH than practical expectations.
- Comparison Vehicles:
 - Both with 5.6m LSSP but differing FOH (0.85m vs. 0.7m); adjusted by increasing/decreasing S-Dimension.
- Outcome:
 - Despite increased S-Dimension for reduced FOH, comparable road space required.
 - Validates LSSP as a consistent metric across varied FOH and frontal swing characteristics.



ROADSIDE FURNITURE AND CURB ASSESSMENT

- Considered assessing curb-to-curb rather than wall-to-wall analysis.
- Frontal swing could pass over the top of a curb boundary and provide a more realistic assessment of the vehicles in-service capability
- Enabling vehicle frontal swing to overlap curbs would be dangerous if curb adjacent obstacles or Roadside Furniture (RSF) are not taken into consideration
- RFS was proposed to be categorized as a separate boundary entity like a wall but it can be added or removed
- Road managers can manage inconstant RFS and keep maps up to date.
- Use of scalable and droppable template shapes such as circles, squares or rectangles to represent RFS

ROADSIDE FURNITURE AND CURB ASSESSMENT

Frontal Swing Over Curb

Classic Swept Path

ROADSIDE FURNITURE AND CURB ASSESSMENT

Boundary Category	Height (m)
Road lines	0
Curbs	0.1
Walls	×

CONCLUSIONS

• Combined Concept for Accurate LSSP:

- Integration of curb and roadside furniture concept.
- Enhances accuracy and detail in LSSP assessments.
- Representation of Road Line Type Boundaries:
 - Allows for the representation of road line type boundaries.
 - Filters out unrealistic vehicle dynamics for precision.

FUTURE WORK

- Development of additional tyre steer path visualisation to be able to properly allow for front/rear overhangs leeway for curb-to-curb assessment while not allowing for steer tyre-boundary collision.
- Additional development on boundary attributes to group them into separate categories (e.g wall or curb) to better be able to represent the vehicular interactions/collisions with each boundary.

THANK YOU

